Epigenetics – The Molecular Tool in Understanding Abiotic Stress Response in Plants

391

Hauser, M. T., Aufsatz, W., Jonak, C., & Luschnig, C., (2011). Transgenerational epigenetic

inheritance in plants. Biochim. Biophys. Acta Gene. Regul. Mech., 1809(8), 459–468.

Heard, E., & Martienssen, R. A., (2014). Transgenerational epigenetic inheritance: Myths and

mechanisms. Cell, 157(1), 95–109.

Holoch, D., & Moazed, D., (2015). RNA-mediated epigenetic regulation of gene expression.

Nat. Rev. Genet., 16(2), 71–84.

Hou, J., Lu, D., Mason, A. S., Li, B., Xiao, M., An, S., & Fu, D., (2019). Non-coding RNAs

and transposable elements in plant genomes: Emergence, regulatory mechanisms and roles

in plant development and stress responses. Planta, 250(1), 23–40.

Hsu, F. C., Chou, M. Y., Chou, S. J., Li, Y. R., Peng, H. P., & Shih, M. C., (2013). Submergence

confers immunity mediated by the WRKY22 transcription factor in Arabidopsis. Plant

Cell, 25(7), 2699–2713.

Huang, S. Q., Xiang, A. L., Che, L. L., Chen, S., Li, H., Song, J. B., & Yang, Z. M., (2010). A

set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress.

Plant Biotechnol. J., 8(8), 887–899.

Isayenkov, S. V., & Maathuis, F. J., (2019). Plant salinity stress: Many unanswered questions

remain. Front. Plant Sci., 10, 80.

Jablonka, E., & Lamb, M. J., (2002). The changing concept of epigenetics. Ann. N. Y. Acad.

Sci., 981(1), 82–96.

Jaglo, K. R., Kleff, S., Amundsen, K. L., Zhang, X., Haake, V., Zhang, J. Z., Deits, T., &

Thomashow, M. F., (2001). Components of the Arabidopsis C-repeat/dehydration­

responsive element binding factor cold-response pathway are conserved in Brassica napus

and other plant species. Plant Physiol., 127(3), 910–917.

Jaleel, C. A., Gopi, R., Sankar, B., Gomathinayagam, M., & Panneerselvam, R., (2008).

Differential responses in water use efficiency in two varieties of Catharanthus roseus under

drought stress. Comptes Rendus Biologies, 331(1), 42–47.

Jaleel, C. A., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram,

R., & Panneerselvam, R., (2007). Water deficit stress mitigation by calcium chloride in

Catharanthus roseus: Effects on oxidative stress, proline metabolism and indole alkaloid

accumulation. Colloids Surf. B, 60(1), 110–116.

James, R. A., Blake, C., Byrt, C. S., & Munns, R., (2011). Major genes for Na+ exclusion,

Nax1 and Nax2 (wheat HKT1; 4 and HKT1; 5), decrease Na+ accumulation in bread wheat

leaves under saline and waterlogged conditions. J. Exp. Bot., 62(8), 2939–2947.

Jeong, D. H., & Green, P. J., (2013). The role of rice microRNAs in abiotic stress responses.

J. Plant Biol., 56(4), 187–197.

Kachroo, A., & Robin, G. P., (2013). Systemic signaling during plant defense. Curr. Opin.

Plant Biol., 16(4), 527–533.

Kalisz, S., & Purugganan, M. D., (2004). Epialleles via DNA methylation: Consequences for

plant evolution. Trends Ecol. Evol., 19(6), 309–314.

Kaplan, F., Kopka, J., Haskell, D. W., Zhao, W., Schiller, K. C., Gatzke, N., Sung, D. Y., &

Guy, C. L., (2004). Exploring the temperature-stress metabolome of Arabidopsis. Plant

Physiol., 136(4), 4159–4168.

Khan, A., Ijaz, M., Muhammad, J., Goheer, A., Akbar, G., & Adnan, M., (2016). Climate

change implications for wheat crop in Dera Ismail Khan District of Khyber Pakhtunkhwa.

Pakistan Journal of Meteorology, 13(25).

Kim, J. H., (2021). Multifaceted chromatin structure and transcription changes in plant stress

response. Int. J. Mol. Sci., 22(4).